ON MONADS IN SATURATED ENLARGEMENTS

BY

STEPHEN H. HECHLER

ABSTRACT

We show that under a stronger hypothesis, a theorem of Luxemburg can be sharpened.

Suppose $\mathcal{M} = \mathcal{M}(X, M)$ is the full L-structure over X, * \mathcal{M} is a higher order model of \mathcal{M} , and A is an entity of type (σ) of * \mathcal{M} (i.e., an *internal* set of entities of type (σ)). In [1] (from which all our notation is taken) Luxemburg asks about the relationship between the discrete monads $\mu_d(A)$ and $\mu_d(\{A\})$ and proves (Theorem 2.6.2) that if * \mathcal{M} is an enlargement, then $\mu_d(A) = \mu_d(\cup \mu_d(\{A\}))$. We prove:

THEOREM. Under the above conditions, if $*\mathcal{M}$ is an enlargement and either A is a singleton or $*\mathcal{M}$ is saturated, then $\mu_d(A) = \bigcup \mu_d(\{A\})$.

PROOF. By Luxemburg's theorem it is sufficient to prove that $\mu_d(A) \subseteq \bigcup \mu_d(\{A\})$. We first note that if $R \in M$ and $A \in R$, then $\mu_d(A) \subseteq \bigcup R$. This follows easily from the fact that $A \in R$ implies $A \subseteq \bigcup R = (\bigcup R)$.

Now choose any $a \in \mu_d(A)$. From the above, we see that for each $R \in M$ such that $A \in R$, we can find an entity B_R such that $a \in B_R \in R$. We look at two cases.

Case 1. A is a singleton. Then for each R, look at the set $S = \{r \in R : r \text{ is a singleton}\}$. Since S contains all the singletons of R, *S must contain all the singletons of *R. In particular $A \in *S$. Thus we may find a set B_S such that $a \in B_S \in *S \subseteq *R$. But *S contains only singletons so $a \in B_S \in *S$ implies $B_S = \{a\}$. Thus we have shown that for each $R \in M$ such that $A \in *R$, we have $\{a\} \in *R$. This in turn tells us that $\{a\} \in \mu_d(\{A\})$ and therefore $a \in \bigcup \mu_d(\{A\})$.

Case 2. * \mathcal{M} is saturated. Let b be the internal relation defined by $\Phi_3(b, D, B)$

Received November 10, 1971.

 $\leftrightarrow a \in B \in D, \text{ and let } \mathscr{D} = \{*R \colon A \in *R\}. \text{ Suppose } *R_0, \dots, *R_n \in \mathscr{D}. \text{ Then } D$ $= \bigcap_{k \leq n} *R_k = *(\bigcap_{k \leq n} R_k) \in \mathscr{D}, \text{ and therefore, by our earlier work, there exists a single entity } B_D \text{ satisfying } a \in B_D \in \bigcap_{k \leq n} *R_k. \text{ Hence } b \text{ is concurrent on } \mathscr{D}. \text{ This however, by saturation, implies that there exists a set } S \text{ such that for each } R \in M, A \in *R \text{ implies } a \in S \in *R. \text{ Thus } a \in S \in \mu_d(\{A\}) \text{ which again implies } a \in \cup \mu_d(\{A\}).$

We do not know if saturation is necessary even in the case that A has only two elements.

REFERENCES

1. W. A. J. LUXEMBURG, A general theory of monads, in: *Applications of Model Theory to Algebra, Analysis, and Probability*, ed. W. A. J. Luxemburg, Holt, Rinehart and Winston, 1969, pp. 18-86.

CASE WESTERN RESERVE UNIVERSITY CLEVELAND, OHIO